Researchers at Binghamton University have encrypted patient data using a person’s unique ECG as the key to lock and unlock the files.
A patient’s own heartbeat may soon be used to access his personal electronic health records, according to researchers at Binghamton University.
“The cost and complexity of traditional encryption solutions prevent them being directly applied to telemedicine or mobile healthcare. Those systems are gradually replacing clinic-centred healthcare, and we wanted to find a unique solution to protect sensitive personal health data with something simple, available and cost-effective,” said Zhanpeng Jin, assistant professor in the Department of Electrical and Computer Engineering at the Thomas J. Watson School of Engineering and Applied Science at Binghamton University.
Traditional security measures—like cryptography or encryption—can be expensive, time-consuming, and computing-intensive. Binghamton researchers encrypted patient data using a person’s unique electrocardiograph (ECG)—a measurement of the electrical activity of the heart measured by a biosensor attached to the skin—as the key to lock and unlock the files.
“The ECG signal is one of the most important and common physiological parameters collected and analysed to understand a patient’s’ health,” said Jin. “While ECG signals are collected for clinical diagnosis and transmitted through networks to electronic health records, we strategically reused the ECG signals for the data encryption. Through this strategy, the security and privacy can be enhanced while minimum cost will be added.”
Essentially, the patient’s heartbeat is the password to access their electronic health records, according to the researchers.
The identification scheme is a combination of previous work by Jin using a person’s unique brainprint instead of traditional passwords for access to computers and buildings combined with cyber-security work from his partners, Assistant Professor Linke Guo and Associate Professor Yu Chen.
“This research will be very helpful and significant for next-generation secure, personalised healthcare,” said Jin.
Since an ECG may change due to age, illness or injury—or a patient may just want to change how their records are accessed—researchers are currently working out ways to incorporate those variables.