More

    TI’s Integrated Transformer Module Technology Helps Maximize Drive Time in Hybrid and Electric Vehicles

    Texas Instruments (TI)  today introduced the industry’s smallest and most accurate 1.5-W isolated DC/DC bias supply module. The UCC14240-Q1 uses a proprietary integrated transformer technology to enable designers to cut their power solution size in half for use in high-voltage environments such as electric vehicles (EVs), hybrid EVs, motor-drive systems, and grid-tied inverters.

    With the accelerating growth of the EV market, automotive design engineers are looking for ways to improve efficiency and reliability, while also reducing the weight of the heaviest part of the EV: the powertrain. To help meet the need for smaller, more reliable systems to extend driving range, engineers are moving to a distributed power architecture, a scheme where every isolated gate driver has a dedicated bias supply. This architecture improves how the system reacts to single-point failures. For example, if one bias supply fails, the other bias supplies remain operational, as do their paired gate drivers— helping to keep a vehicle safely on the road.

    Extend driving range with the industry-leading power density and system efficiency

    The UCC14240-Q1 offers size and efficiency advantages that enable greater power density and system efficiency, which can allow vehicles to drive farther between charges. The 3.55-mm height and small footprint of the UCC14240-Q1 enable designers to reduce the power solution volume by as much as 50%, packing more power in half the size. The height reduction also gives engineers the full flexibility to place the module on either side of the printed circuit board.

    This dual-output power module offers 60% efficiency – twice that of traditional bias supplies – doubling the power density and helping increase vehicle driving range. By delivering more than 1.5 W at ambient temperatures of 105°C, the UCC14240-Q1 enables engineers to drive isolated gate bipolar transistors (IGBTs), silicon carbide (SiC) and gallium nitride (GaN) switches at high frequencies.

    Achieve high CMTI and ultra-low EMI to speed time to market

    By leveraging TI’s integrated transformer technology with a 3.5-pF primary-to-secondary capacitance, the UCC14240-Q1 can mitigate EMI caused by high-speed switching and comfortably achieve common-mode transient immunity (CMTI) performance of more than 150 V/ns.

    Featuring soft switching, spread-spectrum modulation, shielding and low parasitics, the UCC14240-Q1 enables designs to more easily meet the electromagnetic compatibility standards of Comité International Spécial des Perturbations Radioélectriques (CISPR) 25 and CISPR 32, speeding time to market.

    Protect vehicle performance with industry-best accuracy over temperature and isolation

    The UCC14240-Q1’s integrated closed-loop control enables ±1.0% accuracy from -40°C to 150°C. The device’s tight tolerance enables the use of smaller power switches while also improving overcurrent protection. Fault monitoring, overcurrent protection, overpower protection, and overtemperature protection is all fully integrated. The UCC14240-Q1 offers third-party-certified 3-kVrms isolation and delivers the industry’s best vibration immunity due to its ultra-low weight and 3.55-mm height.

    Package, availability, and pricing

    The UCC14240-Q1 is available in pre-production quantities from TI in a 36-pin, 12.8-mm-by-10.3-mm-by-3.55-mm shrink small-outline package. Pricing starts at US$4.20 in 1,000-unit quantities.

    For more information, visit www.ti.com 

    ELE Times News
    ELE Times News
    ELE Times provides extensive global coverage of Electronics, Technology, and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified, and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads, and market your products favorably.

    Technology Articles

    Popular Posts

    Latest News

    Must Read

    ELE Times Top 10