More

    Photocathode Cells with Greater Efficiency

    Photoelectrochemical cells are promising tools for the conversion of sunlight into fuel, for example, water into hydrogen, or CO2 into organic molecules. To realize this, a higher efficiency of the photocathode, often based on NiO, is needed. An important question is the role of water molecules adsorbed on the NiO surface. Research on the effects of this adsorption has been carried out by Kaijian Zhu, a Ph.D. student in the team of Dr. Annemarie Huijser, Associate Professor in the Photocatalytic Synthesis Group at the University of Twente. The project is part of the Advanced Research Center Chemical Building Blocks

    “In this work, we studied the light-induced processes occurring at the photocathode/electrolyte interface by advanced ultrafast spectroscopy.” We show that hydroxyl groups formed at the NiO/water interface not only promote charge transfer between NiO and dye but also increase the rate of charge recombination. Both processes are considerably slower when the photocathode is exposed to acetonitrile, while intermediate behavior is observed in air. This study shows that more efficient photocathodes can be developed by optimizing the number of surface hydroxyl groups.

    ELE Times Research Desk
    ELE Times Research Deskhttps://www.eletimes.com/
    ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

    Technology Articles

    Popular Posts

    Latest News

    Must Read

    ELE Times Top 10