KYOCERA AVX, a leading global manufacturer of advanced electronic components engineered to accelerate technological innovation and build a better future, is launching the industry’s first evaluation board for testing antenna band switching performance at CES 2022 in Las Vegas. The new Antenna Band Switching Evaluation Board (1004795-EC646-01) is comprised of standard products including embedded, universal broadband, FR4 LTE/LPWA antenna (1004795), an Ether Switch & Tune chipset (EC646) for band switching or aperture tuning, a battery holder to power the RF switch, a female SMA connector, and a small (45.5 x 60mm) evaluation board optimized for testing the antenna performance of standard-sized IoT devices. It is engineered to reduce the number of device design iterations, improve accuracy, and hasten product time-to-market for low- and high-band frequency (968–960MHz and 1.71–2.17GHz) 4G, 5G, broadband LTE, LTE Cat-M, NB-IoT, and cellular LPWA applications including cellular headsets and tablets, handheld electronics, embedded designs, telematics, tracking, and on-board diagnostics (OBD-II) systems, and industrial M2M, IoT, healthcare, home automation, and smart grid devices.
IoT devices tend to be rather small, and compact, densely populated PCBs can significantly degrade the bandwidth and efficiency performance of the passive monopole and Planar Inverted-F antennas (PIFAs) that are widely employed in mobile phones and other modern RF electronics but are susceptible to position-based performance changes and interacting with their surroundings, which can further complicate high-density PCB layouts. Active antennas capable of band switching, also known as aperture tuning, cover a wider frequency range than passive antennas by actively switching between frequency bands. In addition, active antennas capable of covering the same frequencies as passive antennas have smaller form factors better suited to compact, high-density devices and, at equal size, will cover more frequency bands than passive antennas. Further, KYOCERA AVX active antennas, like the embedded, universal broadband, FR4 LTE antenna employed in the new Antenna Band Switching Evaluation Board, are equipped with patented Isolated Magnetic Dipole (IMD) technology, which delivers unique size and performance advantages including reduced ground plane and keep-out area size requirements for greater design flexibility, superior RF field containment for reduced interaction with surrounding components, and higher efficiency, gain, isolation, and directivity characteristics than competing solutions for higher-reliability connectivity with better return loss and minimal interference.
The new KYOCERA AVX Antenna Band Switching Evaluation Board is RoHS compliant, measures 45.5mm x 60.0mm, weighs 10.5 grams, and is rated for operating temperatures spanning -40°C to +85°C. It exhibits less than -2.5dB return loss, 50Ω unbalanced feed-point impedance, linear polarization, and 2.0W continuous wave (CW) power handling. At low-band frequencies, the Antenna Band Switching Evaluation Board exhibits peak gain ranging from -3.67dBi to -1.75dBi and average efficiency ranging from 18–30%, specifically: -3.67dBi and 18% from 890–960MHz (RF1), -2.77dBi and 22% from 700–800MHz (RF2), -2.76dBi and 20% from 700–750MHz (RF3), and -1.75dBi and 30% from 790–890MHz (RF4). At high-band frequencies spanning 1.71–2.17GHz, it exhibits peak 1.95dBi and 60% at RF3.
“The new KYOCERA AVX Antenna Band Switching Evaluation Board is the first of its kind available in the global electronics market and will help RF design engineers optimize antenna size, performance, and emissions, reduce the number of device design iterations, more easily satisfy the customer and regulatory specifications, and hasten product time-to-market,” said Carmen Redondo, Global Marketing Manager, Antennas, KYOCERA AVX. “It is also optimally sized for testing the performance of IoT devices, equipped with proven KYOCERA AVX components including a high-performance, universal broadband, FR4 LTE antenna with patented IMD technology and an Ether Switch & Tune chipset, and ideal for testing consumer electronics, industrial, medical, IoT, embedded systems, and utility market applications including cellular headsets and tablets, handheld electronics, embedded designs, telematics, tracking, and on-board diagnostics (OBD-II) systems, and industrial M2M, IoT, healthcare, home automation, and smart grid devices with operating frequencies extending from 968–960MHz and 1.71–2.17GHz.”